BG BAU Berufsgenossenschaft der Bauwirtschaft

Rückwärts blättern Vorwärts blättern

5 Extrapolation auf niedrigere Risikohöhen

5.1 Festlegung des Vorgehens nach dem Wirkprinzip

(1) Wurde nach den Erkenntnissen in Nummer 2 ein im Wesentlichen durch die direkte Gentoxizität determiniertes Wirkprinzip für die Kanzerogenese festgestellt, so erfolgt im Standardfall eine lineare Extrapolation.

(2) Wurde nach den Erkenntnissen in Nummer 2 festgestellt, dass das Wirkprinzip alleine durch nichtgentoxische Ereignisse geprägt ist und kann für den oder die bestimmenden Parameter eine Dosis-Wirkungsbeziehung mit einer Wirkungsschwelle benannt werden, so ist diese zu berechnen.

(3) Ist kein Wirkprinzip bekannt bzw. ausreichend gesichert, erfolgt im Standardfall ebenfalls eine lineare Extrapolation.

(4) In Fällen, wo das Wirkprinzip zwar im Wesentlichen bekannt ist, jedoch

  1. eine direkte Gentoxizität keine dominierende Bedeutung besitzt,
  2. keine eindeutige Wirkungsschwelle für die Kanzerogenität vorliegt oder
  3. eine Schwelle aufgrund der Datenlage nicht quantifiziert werden kann,

wird im Regelfall ein sublinearer Dosis-Wirkungsverlauf in den Niedrigrisikobereich unterstellt.

Zum Begriff der "Wirkungsschwelle" sind die Ausführungen im Nummer 2.5 zu beachten. Grundsätzlich ist ein NOAEL für kanzerogene Effekte (keine beobachtete signifikant erhöhte Inzidenz gegenüber Hintergrund) quantitativ nicht mit einer Schwelle gleichzusetzen.

(5) In Zweifelsfällen über die Zuordnung zu (1) bis (4) ist über parallele Risikoquantifizierungen nach verschiedenen Methoden (siehe Nummer 5.2) zu prüfen, ob sich Unterschiede ergeben und wie relevant die Festlegung auf ein Wirkprinzip ist. Ggf. ist bei nahe zusammenliegenden Dosis-Risikoverläufen auf eine Entscheidung zum vorherrschenden Wirkprinzip nicht notwendig, um ohne relevanten Fehler eine Risikoquantifizierung vorzunehmen. Die Unsicherheit in der Risikoquantifizierung ist zu dokumentieren. Für den Fall, dass die parallelen Risikoquantifizierungen zwar für Expositionen mit erhöhtem Risiko noch zu vergleichbaren Risikozahlen führen (z. B. bei zusätzlichen Lebenszeitrisiken bis in den Promillebereich), jedoch bei niedrigeren Risiken gravierende Abweichungen auftreten, ist der Gültigkeitsbereich entsprechender Dosis-Risiko-Verläufe abzugrenzen.

(6) Eine Risikoextrapolation in den Niedrigrisikobereich unter Verwendung derjenigen Modellfunktion, die für den experimentellen Bereich die beste Anpassung an die Daten gezeigt hat, ist in der Regel kein geeignetes Vorgehen. Es ist z. B. möglich, dass im experimentellen Bereich Supralinearität vorliegt, jedoch Sublinearität im Niedrigrisikobereich.

Die Konvention, die Benchmark-Methode bei belegter Sublinearität als Ersatz für das linearisierte Multistage-Modell als mechanistisch begründet für den experimentellen Bereich und den Niedrigrisikobereich zu verwenden (siehe Nummer 3.2 Abs. 3 und Nummer 5.2 Abs. 3), widerspricht dieser Aussage (6). Diese Modellierung wird jedoch deshalb für die Extrapolation herangezogen, weil sie eine einfache Konvention zur Beschreibung einer Sublinearität bietet. Es ist jedoch nicht daraus zu schlussfolgern, dass mit diesem Modell die "richtige" Steigung im Niedrigrisikobereich gefunden wurde.

5.2 Extrapolation auf niedrigere Risikohohen bei nichtlinearem Verlauf

(1) Es wird eine Informationslage entsprechend Fall (4) in Nummer 5.1 unterstellt, so dass mit hinreichender Wahrscheinlichkeit von einem nichtlinearen Dosis-Wirkungsverlauf auszugehen ist. In diesem Fall wird eine plausible Festsetzung fur diese nichtlineare Funktion vorgenommen.

(2) Ist die Datenlage hinreichend qualifiziert, dass das Benchmark-Verfahren eingesetzt werden kann, dann wird unterstellt, dass mit der Benchmark-Modellierung auch die Nichtlinearitat in einem Risikobereich 1:1000 abgebildet werden kann, auch wenn der experimentelle Bereich nur Risiken ab z. B. 1 Prozent oder ab 5 Prozent abdeckt. Zwischen BMD0,1 (1:1000) und Ursprung bzw. Hintergrund wird linear extrapoliert.


Der Bezug zur BMD statt zur BMDL ist deshalb gerechtfertigt,
  1. weil es sich bei der Orientierung an der BMD um die Schätzung mit der höchsten Wahrscheinlichkeit handelt ("maximum likelihood"),
  2. weil nach Absatz 4 Nummer 5.1 zusätzliche inhaltliche Gründe vorliegen müssen, die einen nichtlinearen Verlauf stützen, so dass Modellierungen, die über die BMDL mathematisch als möglich angesehen werden müssten, aus diesen inhaltlichen (z. B. mechanistischen) Gründen als unwahrscheinlich angesehen werden,
  3. weil aufgrund der Qualitätskriterien Benchmark-Modellierungen nur dann als adäquat betrachtet werden, wenn die Unterschiede zwischen BMD und BMDL gering sind, so dass nicht mit einer relevanten Risikounterschätzung bei Bezug auf die BMD zu rechnen ist (selbst wenn "in Wirklichkeit" die BMDL das Risiko korrekter widerspiegeln sollte). Ferner ergibt sich das Vorgehen aus der methodischen Kontinuität zum T25, der ebenfalls keinen Vertrauensbereich enthält.


Die folgenden Beispiele (Fall A, B) zeigen eine Abgrenzung zwischen einem Fall mit Nichtlinearität (Fall A) und Linearität (Fall B). In Fall A wären zusätzliche mechanistische Hinweise erforderlich, die die Nichtlinearität stützen. Können diese nicht gegeben werden, stellt die BMD10 den POD dar, unterhalb dessen eine lineare Extrapolation erfolgen würde.

FALL A: Gute Datenlage verweist auf nichtlineare Verhältnisse

Konzentration (mg/m3) Anzahl
Tiere
Anzahl
Tumoren
Kommentar:
0 50 0 Verlauf spricht für eine deutliche Nichtlinearität; gute Datenlage; z. B. mechanistische Hinweise auf Nichtlinearität
10 50 1
50 50 0
200 50 10
1000 50 45

Ergebnis, graphisch:

Probit Model with 0.95 Confidence Leve

Ergebnis in Zahlen, Erläuterung:

Modell BMD 10 BMDL10 BMDL0,1 = 1 Promille BMD0,1 = 1 Promille T25 T25/250= 1Promille
  150 110 22 40 235 0,94
Kommentar 1:  Unterschied 40/0,94 zeigt, dass BMD (1 Promille) deutlich geringeres Risiko ausweist als der bei dieser Datenlage nicht geeignete T25-Ansatz 40 ←  → 0,94
Kommentar 2: Der geringe Unterschied zwischen 150 und 110 (bzw. 40 und 22) zeigt, dass kein relevanter Unterschied zwischen BMD und BMDL bei guter Datenlage besteht
Kommentar 3: Es wurde mit Logprobit modelliert. Wegen AIC=100,87 und p-Wert:0,34, chi-square=2,15 ist dies gegenüber Multistage gerechtfertigt. Dort: AIC: 103,p-Wert:0,19; Chi-Square: 3,3 und somit schlechtere Anpassung → Multistage würde Nichtlinearität kaum zeigen

FALL B: Mittlere Datenlage lässt nichtlineare oder lineare Verhältnisse zu

Konzentration (mg/m3) Anzahl
Tiere
Anzahl
Tumoren
Kommentar:
0 50 0 Verlauf schließt Nichtlinearität nicht aus, doch auch Linearität möglich; mittlere Datenlage (Kriterien nach Leitfaden 3.1 erfüllt)
10 50 1
     
200 50 10
1000 50 45

Ergebnis, graphisch:

Multistage Model with 0.95 Confidence Leve

Ergebnis in Zahlen, Erläuterung:

Modell BMD 10 BMDL10 BMDL0,1 = 1 Promille BMD0,1 = 1 Promille T25 Linear:
T25/250= 1 Promille
  99 58 0,56 1,1 231 0,92
Kommentar 1:  Unterschied 0,92/1,1 zeigt, dass BMDL (1 Promille) fast identisches Risiko ausweist wie T25-Ansatz, da Linearität möglich (siehe Graphik) 1,1 ←  → 0,92
Kommentar 2: Der Unterschied zwischen BMD und BMDL ist nicht erheblich
Kommentar 3: Es wurde mit Multistage (2 Freiheitsgrade) modelliert. Wegen AIC=98,86 und p-Wert:0,43, chi-square=0,63 ist dies gegenüber Logprobit gerechtfertigt. Dort: AIC: 99,74 p-Wert:0,31; Chi-Square: 1,01 und somit schlechtere Anpassung → ähnliche Extrapolation linear/ Benchmark-Verfahren

(3) Wurde der T25 als POD für das Krebsgeschehen herangezogen, dann wird für den Fall begründeter Nichtlinearität angenommen, dass eine nichtkanzerogene Wir-kung als Verstärkungsmechanismus (z. B. Reizung im Respirationstrakt, Zytotoxizität in der Niere), die zum Krebsgeschehen in höherer Dosierung maßgeblich beiträgt, quantitativ beschrieben werden kann. Die Ermittlung des anzunehmenden Expositions-Risikoverlaufs erfolgt dann in vier Schritten.

Schritt 1:   Für diese (für sich nichtkanzerogene) verstärkende Wirkung wird eine humanäquivalente Wirkungsschwelle (TC*; als Konzentration in der Luft) ermittelt, indem übliche Extrapolationsfaktoren berücksichtigt werden.

Extrapolationsverfahren für nichtkanzerogene Wirkungen werden nach dem Ansatz der EU (DNEL; RIP 3.2.2) durchgeführt.
Schritt 2: Es wird – ausgehend vom normalisierten und als Humanäquivalent umge-rechneten T25 (hT25) – als Zwischenrechnung das Krebsrisiko (10-p) bei linearer Extrapolation zwischen T25 und Ursprung bzw. Hintergrund am Punkt TC* berechnet.
Schritt 3: Dem Punkt TC* wird dann pragmatisch ein zehnfach geringeres Krebsrisiko (1 Größenordnung: 10-(p-1)) als bei linearer Extrapolation zugewiesen.
Schritt 4: Schließlich wird vom Punkt TC* linear zum T25 und zum Ursprung (bzw. zum Hintergrund) linear extrapoliert. Das nominelle Risiko kann somit für jeden Punkt zwischen Nullpunkt und T25 genannt werden mit einer Knickstelle der Funktion bei der extrapolierten Wirkungsschwelle (TC*) für den Verstärkungsmechanismus.

Die Vorgehensweise bei diesem "hockey stick"-Ansatz berücksichtigt, dass in der Regel zwar bekannt ist, wenn ein nichtlinearer Verlauf für die Konzentrations-Risiko-Beziehung zu unterstellen ist, dass jedoch weitere Parameter, die die Nichtlinearität des Krebsgeschehens quantitativ beschreiben, nicht bekannt sind. Der unbekannte Grad des "Durchhängens" der sublinearen Funktion wird durch einen Abschlagsfaktor an der extrapolierten Wirkungsschwelle ersetzt.

Die folgende Abbildung zeigt prinzipiell die oben genannten Schritte in dem Fall, dass für das Krebsgeschehen ein T25 vorliegt und zusätzlich genügende Daten vorliegen, um für einen Verstärkermechanismus eine Wirkungsschwelle (TC*) zu ermitteln (Erläuterung siehe Text):
   

Sublinearit bei Gentoxizit plus Verstärkermechanismus

Bei der Berechnung des T25 sind zuvor die in den Nummern 3.6, 4.2, 4.4 erforderlichen Normierungen vorzunehmen.

Ein Beispiel zur Berechnung ist im Anhang (Nummer 10.2) aufgeführt.

5.3 Extrapolation bei angenommenem Schwellenphänomen

(1) Wird eine Mindestdosis bzw. Wirkungsschwelle für die Kanzerogenese angenommen (Absatz 2 in Nummer 5.1), so ist die Schwellendosis auf Basis vorliegender experimenteller Daten unter Einschluss bestimmter Extrapolationsfaktoren zu quantifizieren. Es wird vorausgesetzt, dass in diesem Falle weder direkte Gentoxizität und andere Wirkprinzipien ohne Schwelle eine Rolle spielen.

(2) Für die Festlegung der Schwellendosis sind besonders sorgfältig gerade auch Frühzeichen der entsprechend relevanten kritischen Veränderung zu erfassen, z. B. wären bei krebsrelevanter Nephrotoxizität auch erste Frühschäden in der Niere, die sich z. B. durch entsprechende Eiweißausscheidungen manifestieren, einzubeziehen. Dosis-Wirkungsbeziehung, LOAEL und NOAEL für diese (selbst nicht krebserzeugende, jedoch) für die Krebsentstehung als maßgeblich angesehene Wirkung sind zu ermitteln.

(3) Liegen keine entsprechend differenzierten Studienbefunde zu frühen Schädigungen vor, die als maßgeblich für die krebserzeugende Wirkung angesehen werden, soll dies über konservative Extrapolationsfaktoren ausgeglichen werden. In diesem Sinne erfordert die Festlegung z. B. einer Reizschwelle für einen nicht krebserzeugenden Stoff niedrigere Extrapolationsfaktoren als die Festlegung einer Reizschwelle bei einem Stoff, bei dem Reizung ein wichtiger Parameter für das Wirkprinzip bei Krebs darstellt.

(4) Aus diesem Grunde wird eine Erweiterung der üblichen Extrapolationsfaktoren um den Faktor 10 vorgenommen, so dass auf dem Hintergrund des möglichen Folgeeffekts Krebs die (zu unterschreitende) Wirkungsschwelle besonders sicher abgeschätzt wird. Nach der Terminologie in Nummer 5.2 liegt damit diese konservative Wirkungsschwelle bei TC*/10, wobei TC* sich dann nicht auf krebsverstärkende sondern auf krebsauslösende Wirkungen bezieht.

Extrapolationen zur Berechnung von TC* verlaufen entsprechend der DNEL-Kalkulation (RIP 3.2.2).

Versteht man den "üblichen" NOAEL als einen Wert, der durchaus noch mit einem Effektniveau von fünf Prozent verbunden sein kann (auch wenn im experimentellen System keine Wirkung mehr beobachtet wird), so wird über diesen Faktor 10 ein deutlich kleineres Effektniveau mit dem resultierenden NAEL zu verbinden sein (z. B. Effektniveau 0,5 Prozent).

Das Vorgehen deckt sich mit dem Verständnis der einzelnen Extrapolationsfaktoren als bestimmtes Perzentil einer Verteilung (z. B. 90-Perzentil beim Intraspeziesfaktor): die Wahl eines zusätzlichen Extrapolationsfaktors ist gleichbedeutend mit der Erhöhung z. B. des Intraspeziesfaktors zum Einschluss eines höheren Perzentils (z. B. 95-Perzentil) verschiedener Empfindlichkeiten, wird aber pauschal einbezogen (nicht auf einen Einzelfaktor wie Intraspeziesfaktor oder Interspeziesvariabilitätsfaktor oder Zeitfaktor bezogen, sondern auf Gesamtverteilung, d. h. multiplizierte Einzelfaktoren).

(5) In Verbindung mit dem Benchmark-Verfahren für Krebsrisiken wird das Risikoverlauf entlang der modellierten Funktion (als BMD) bis zum Risiko bei einem Prozent angenommen. Damit wird vorausgesetzt, dass die Qualitätsmaßstäbe zur Anwendung des Benchmark-Verfahrens eingehalten sind (siehe Nummer 3.3). Mechanistische Erkenntnisse dürfen dem modellierten Verlauf der Expositions-Risiko-Beziehung nicht widersprechen. Ein Risiko "Null" wird dann pragmatisch bei einer BMD01/10 angenommen.

Für die Quantifizierung der Expositions-Risiko-Beziehung im Bereich oberhalb der angenommenen Wirkungsschwelle erfolgt demnach im vorliegenden Leitfaden nur dann eine Vorgabe, wenn eine Benchmark-Modellierung erfolgte. Liegt keine Benchmark-Modellierung vor, wird die Wirkungsschwelle nach Nummer 5.3 Abs. 4 berechnet, jedoch keine allgemeine Aussage zum Verlauf der Expositions-Risiko-Beziehung oberhalb dieser Wirkschwelle gemacht (ggf. ist eine Einzelfallbetrachtung erforderlich).

Für den Fall, dass das Krebsgeschehen qualifiziert in einer Benchmark-Modellierung abgebildet werden kann, ergibt sich folgende Darstellung für das Extrapolationsverfahren. Die errechnete Wirkungsschwelle (BMD01/10) ist vor ihrer regulatorischen Anwendung noch auf ein Humanäquivalent (Arbeitsplatzszenario) umzurechnen.

 

Webcode: M438-51